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Hamiltonian oracles are the continuum limit of the standard unitary quantum oracles. In this
limit, the problem of finding the optimal query algorithm can be mapped into the problem of
finding shortest paths on a manifold. The study of these shortest paths leads to lower bounds of
the original unitary oracle problem. A number of example Hamiltonian oracles are studied in this
paper, including oracle interrogation and the problem of computing the XOR of the hidden bits.
Both of these problems are related to the study of geodesics on spheres with non-round metrics.
For the case of two hidden bits a complete description of the geodesics is given. For n hidden bits a
simple lower bound is proven that shows the problems require a query time proportional to n, even
in the continuum limit. Finally, the problem of continuous Grover search is reexamined leading to
a modest improvement to the protocol of Farhi and Gutmann.

I. INTRODUCTION

As a physical theory quantum mechanics distinguishes
itself from its classical counterpart by discretizing certain
quantities that were previously considered continuous.
Ironically, it is classical computation that is inherently a
discrete problem, whereas quantum computation involves
a continuous evolution of the state. Nevertheless, when
both computational models are extended to include ora-
cles, the queries are introduced as discrete events. While
there are good physical reasons for such an oracle model,
one is tempted to ask what would constitute half a query
to an oracle. For a standard quantum oracle that applies
phases of 1 and —1, half an oracle call could be an ap-
plication of the phases 1 and i respectively. Surely, two
calls to the second oracle are at least as powerful as one
call to the standard oracle. Continuing along these lines,
one could envision a fraction A of an oracle query that
applies phases 1 and €™ respectively. If 1/A is an inte-
ger, then that many calls to this new oracle would be at
least as good as one standard oracle query.

Taking the limit A — 0 one arrives at the Hamiltonian
oracle model, first described by Farhi and Gutmann [1].
Roughly speaking, the evolution in this model is given
by the Schrédinger equation

L1t = i (H; + H'(0) [p(1), (1)

where H; is the Hamiltonian oracle that depends on
some hidden parameter j, and H'(t) is a time dependent
Hamiltonian that can be chosen arbitrarily but indepen-
dently of j. The goal of the problem is to evolve from
some fixed initial state to a state that contains some in-
formation of the hidden parameter j.

The ability to control H' is equivalent to setting H' = 0
but being able to apply fast unitaries as often as one
wishes. The standard oracle model is simply the restric-
tion that unitaries can be applied only at discrete time
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intervals. Therefore, from the perspective of the time
evolution of the Gram matrix, continuous oracle algo-
rithms appear as smooth curves whereas algorithms for
the equivalent discrete oracles are piece-wise continuous
approximations of such curves. The question we ask here
is: wouldn’t it be easier to study the smooth curves?

This question is in the spirit of recent work by Nielsen
et al. |2, [3] which proposes a similar approach to the
study of quantum circuit lower bounds. The idea is that
differential equations are often easier to solve than differ-
ence equations, and that many problems become simpler
in the continuum limit.

Given that Hamiltonian oracles can be obtained as the
limit A — 0 of discrete oracles, most of the standard
techniques [4, 15, 6] for studying discrete oracles can be
used to obtain bounds on Hamiltonian oracles. However,
our goal is not to import bounds from the discrete case
into the continuous case. Rather we seek to solve Hamil-
tonian oracle problems by new methods that are intrinsi-
cally continuous, and in some cases geometric, and then
export these results back into the realm of discrete oracle
problems in order to prove new lower bounds. So long as
the normalization of the Hamiltonian is chosen so that
the continuous oracle equals O = e ", the minimum
query time needed to solve the continuous case will be
a lower bound on the number of oracle calls needed to
solve the discrete case.

Of course, it is not a priori clear that the continuum
limit offers any simplifications. The reductions of both
Ref. [2] and the present paper map difficult computer sci-
ence problems into the problem of finding shortest curves
on manifolds, which is also considered a difficult problem.
Unfortunately, no new bounds on discrete oracles will be
obtained in this paper. Rather, we shall examine Hamil-
tonian oracles for three problems that have been solved
in the discrete case: Oracle interrogation, the problem of
computing XOR, and one-item Grover search. However,
these examples will serve as an illustration of both the
potential that Hamiltonian oracles present and some of
the techniques that can be used to exploit them.

Oracle interrogation is the problem where the hidden
parameter is an n-bit string which can be queried one
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bit at a time, and we wish to determine the full hidden
string. Though n queries are required to solve the prob-
lem exactly in the discrete setting, van Dam [7] proved
that n/24+0(y/n) queries are sufficient to guess the string
with very high probability.

In Section [[V] we show that the continuous version of
oracle interrogation can be reduced to the study of short-
est curves on S™ with a special metric. For n = 2 the
metric in polar coordinates can be written as

4
ds® = = (d6? + tan® 0d¢?) (2)

and the minimum query time needed to solve the prob-
lem exactly is equal to the shortest distance between the
points with = 7/2, ¢ =0 and 0 = /4, ¢ = 7/4. We
show that a complete set of geodesics can be constructed
for this metric, and that the minimum query time for
zero error is about 90% of the time required to query
both bits separately. This is in contrast with the discrete
case where exact solutions never allow any speedup.

For n > 2 the metric on S™ is no longer Riemannian
but rather of the more general Finsler type. Though the
minimal length curves will not be constructed for these
cases, we prove in Section [[V.H] a simple lower bound on
the query time

T>" 1 001)~0117n (3)
e

which applies to the XOR problem (and hence also to ora-
cle interrogation) in the bounded error setting. This is an
important bound, for if the Hamiltonian model were sig-
nificantly faster than the discrete model at solving oracle
interrogation then it would likely be useless for proving
good lower bounds.

The one-item Grover search oracle is studied in Sec-
tion [Tl It is a simple enough problem that we can ob-
serve the transition from the discrete to the continuum
limit. Given the ability to apply unitaries only at inter-
vals of length A, the problem can be solved exactly in a
query time of

1
arccos
VN

T=A VN (4)
arcsin 2 sm(ﬂ'A]/VQ)\/ N-1

which implies that for large N we obtain a speedup by a
factor of A/sin(mA/2) relative to the standard discrete
oracle A = 1. The result can be extended to fixed error,
and in every case half of the above time is needed to solve
the problem with probability greater than one half.

In the continuum limit we obtain a query time
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for an exact solution, which we prove optimal. The above
solution is shorter asymptotically by an additive constant
of —1/7 than the one found by Farhi and Gutmann [1].

Though the difference is irrelevant from a practical per-
spective, the nature of the different solutions is interest-
ing, and is discussed in Section [[ITEl A similar improve-
ment for the case N = 2 was found in Ref. [g].

The analysis technique used in this paper is pre-
sented in Section [l and is a variant on the adversary
and semidefinite programing approaches |4, 6], where we
study the evolution of the Gram matrix and use sym-
metrization to simplify the problem. The problems con-
sidered herein are sufficiently symmetric that this tech-
nique works well. It also has the benefit that it allows
the continuous and discrete problems to be studied to-
gether using the same notation. The divergence between
the two formulations can be delayed until the last step
where we consider the dynamics of the Gram matrix.

We note that it does not appear that there is a unique
canonical Hamiltonian for a given unitary oracle. In Sec-
tion [[[Al we show a pair of unitary oracles that are com-
putationally equivalent, but lead to different Hamiltonian
oracles under the process of replacing ones with 0 and
minus ones with w. This process also has the undesired
effect that it breaks complex conjugation symmetry. An
alternative way of obtaining a Hamiltonian is to double
the query space and replace a one eigenvalue by two 0’s
and a minus one eigenvalue by m and —n. This essen-
tially introduces an “arrow of time” qubit that allows
the choice between the canonical evolution and its com-
plex conjugate. In fact, it is this form of oracle that is
analyzed in the oracle interrogation and XOR problems
as we want to ensure that the lower bounds apply to the
most general case. For the Grover search problem the
standard oracle was used.

The philosophy that has been adopted in this paper
is that Hamiltonian oracles are a tool in the study of
the standard discrete oracles. Being able to identify a
Hamiltonian (possibly from a given set of Hamiltonians)
is also an important problem in experimental physics
where the hidden parameter is some physical constant
which we are interested in measuring [8]. However, the
two problems are somewhat different. The Hamiltoni-
ans that correspond to standard unitary oracles typically
couple O(log n) qubits, where n is the number of possible
different queries. Such couplings are generally not found
in nature. Furthermore, the computational version of the
problem only concerns itself with one resource: query
time. In the experimental version of the problem one
may also need to place bounds on the maximum energy
of the control Hamiltonian, how quickly it can be changed
and what complexity can be achieved. Balancing these
competing resources, however, is beyond the scope of this
paper.

In the end, all the Hamiltonian oracles studied in this
paper were equivalent up to a constant factor to their
discrete counterpart. It is unclear if such a relationship
holds in general and if so, how large can this constant
be? Future work will have to address this question along
the road to finding new lower bounds from Hamiltonian
oracles.



Prior work

The first paper to study Hamiltonian oracles from a
quantum computation perspective is the work of Farhi
and Gutmann [1] as discussed above.

The paper by Fenner [9] reexamines the continuous
Grover search with a goal of finding a Hamiltonian that
matches the discrete case step by step. However, in
their construction they allow a total Hamiltonian that
is a commutator of the oracle and control Hamiltonians,
whose physical motivation is unclear.

The paper by Roland and Cerf [10] also compares the
discrete and continuous version of Grover search and
studies the simulation of the continuous algorithm by a
discrete quantum computer.

Most of the subsequent work involving Hamiltonian
oracles studied the problem of spatial search [11, 12],
which is a variant of Grover search where the database
has some spatial arrangement and only local moves are
permitted. The algorithms for these problems employ
the continuous quantum walk [13].

There are also many papers that study the problem of
identifying a Hamiltonian, though their goals are gener-
ally different from ours. For instance, Ref. [14] studies
the time-energy uncertainty relation as applied to Hamil-
tonian identification whereas Ref. [15] shows that in prin-
ciple a set of Hamiltonians can be distinguished, though
the efficiency is not considered. The relation between
Hamiltonian oracles and identifying Hamiltonians in the
laboratory was also discussed above: Childs, Preskill and
Renes [8] continued the work on Hamiltonian oracles,
with a view towards exporting the knowledge of quan-
tum computation to the realm of experimental physics.
In the same spirit is the work of quantum parameter es-
timation for dynamical systems, such as the paper by
Mabuchi [16].

Finally, the study of Hamiltonian oracles can be re-
cast into a number of formalisms including time optimal
control [17] which also greatly benefits from geometric
approaches. As a Hamiltonian oracle problem can be
studied as a single bipartite Hamiltonian where one can
perform arbitrary operations on one side only, this can be
translated into the language of optimal control by identi-
fying the oracle Hamiltonian as a drift Hamiltonian, and
the subgroup of allowed operations K C G as those that
act on only one subsystem. Once again, however, the
typical Hamiltonians that are of interest in one field are
fairly different from those of the other.

II. MODELS AND METHODS

Below we shall introduce a more formal definition of
the Hamiltonian oracle model, which will be presented
in a language that emphasizes its connections to discrete
oracles. We shall use the description of oracle problems
as an Alice-Bob game, with Alice taking the place of the
oracle. This will facilitate the translation of the prob-

lem into a semidefinite program using Kitaev’s construc-
tion for coin-flipping [1&]. The resulting semidefinite pro-
gram will be equivalent to the one of Barnum, Saks and
Szegedy [6], though it will be easier to symmetrize. Most
of the discussion in this section has appeared elsewhere
and is intended mainly for review purposes and to fix the
notation used for the rest of the paper.

In the Alice-Bob game description of the oracle prob-
lem Alice starts with a hidden string (or superposition
of strings) in a Hilbert space .A. Bob can query Alice by
sending a message in some space M. Alice always applies
some known fixed unitary (or Hamiltonian) to A® M and
returns M to Bob. Of course, Bob is allowed to have his
own private Hilbert space B, however it will never be ex-
plicitly referenced as everything will be described from
Alice’s perspective.

In the end Bob must guess some property of the hidden
string, and send his guess to Alice in space M’, who
determines whether it is correct or not. We say that Bob
wins when Alice accepts his answer, and the goal is to
maximize this probability.

In principle, given a strategy for Bob, we need to try
it against each of the possible hidden strings, one at a
time. Because we are interested in the worse-case success
probability, we take the minimum over the success prob-
abilities for the different possible hidden strings. How-
ever, as is common in adversary methods, Alice can start
with a superposition over different possible input strings.
In such a case the worse-case success probability can be
calculated by a single run through the Alice-Bob game.
However, the operation which computes this final worse-
case success probability is not a physical quantum mea-
surement but rather just a linear expression involving Al-
ice’s final density operator. Nevertheless, it will be Bob’s
goal to use his interactions with Alice in order to attain
a final density operator that maximizes the expression
for the success probability. We shall say more about this
final operation below.

Formally, we define an oracle problem by three Hilbert
spaces A, M and M’ together with an initial pure state
[tbo) on A, a unitary operator O (or Hermitian operator
H in the continuous case) on A ® M, and a set of pos-
itive operators {II;} on A ® M’ labeled by an index x
which usually ranges over the set of hidden strings. For
the discrete case we also specify a positive number A
corresponding to an interval of time.

A protocol for an oracle problem is given by a positive
time T (divisible by A in the discrete case), a success
probability Pn, a pair of functions p(t) and p(t) for
0 <t < T (valued at integer multiples of A for the
discrete case) and a final matrix 5. We require that
p(t), p(t) and p’' be positive operators on the spaces A,
AR M and A ® M’ respectively. They must satisfy the
following equations:

e Initialization:

p(0) = [vo){vol4- (6)



e Bob’s action (for 0 <t < T):

e Alice’s action
— for discrete time (0 <t < T — A)
plt+A) = TrpmlOp(t)O0]. (8)
— for continuous time (0 <t < T)

d

o) = —iTeu[Hp(t) — p(t)H) (9)

e Bob’s output:
Trae[p] = p(T). (10)
e Answer verification (for every x):

Py < Tr[IL7]. (11)

A standard discrete-time oracle problem will have A =
1, however, the above formulation allows us to pass to the
continuous time limit by defining O = e~** and then
taking the limit A — 0.

The basic goal of the problem is to choose the protocol
p(t), p(t) and p’ as to maximize the probability of winning
Pyin, for a given time T'. Of course, eventually one wants
to invert the relation: fix P,;, and find the smallest T
for which it can be achieved as a function of some scaling
of the problem.

The above formulation should be understood as fol-
lows: Say Alice has a density operator p(¢) on A at a
given time . When Bob queries Alice by sending a mes-
sage in the space M, Alice ends up with a density oper-
ator p(t) on the larger space A® M. This operator must
satisfy the consistency condition given by Eq. (7)) because
Bob cannot affect the state of A. Having received Bob’s
message, Alice applies the oracle operation and returns
M to Bob, ending up with a new state defined by Eq. (&)
or Eq. [@).

To relate the above definition to the standard oracle
model we let A be the Hilbert space spanned by the set
of hidden strings. Then O = }°_|z)(z[, ® O, where
O, are the standard oracle operators on M given hidden
parameter x. For the continuous case we similarly have
H=, |o){al 4 © H.

A good guess for the final operation would be the two-
outcome POVM {II,I — II}, where II = }__|z)(z]|, ®
|f(x))(f(x)| \, and f(x) is the target function to com-
pute such as XOR. We would then declare Bob a winner
only if the first outcome was obtained, thereby setting
Pyin = Tr[lIp']. However, this only computes the aver-
age success probability rather than the worse-case success
probability. Instead, the correct prescription is to use
Eaq. () with 1L, = [2)(a], © | f())(F(@)] vp /I(ltéo) 2,
so that Tr[II,p'] will be the probability of Bob correctly
answering given that the hidden string was z.

For the discrete oracle case deriving the above semidef-
inite program is fairly simple. Clearly no matter what ac-
tions Bob performs, Alice’s density operators must sat-
isfy the above equations. On the other hand, because
Alice starts with a pure state and makes no measure-
ments, Bob can keep the purification of Alice’s state and
therefore force any evolution consistent with the above
equations.

To arrive at the continuous case simply define A =
2% and O = e *H for k € Z*. Given some fixed
T, let Pyin(k) be the maximum over all protocols for
the discrete oracle problem with a given k. Trivially,
Pyin(k+1) > Pyin(k). If we also defined the problem so
that Pyin(k) < 1 for all k, then in the limit & — oo we
converge to a well defined Py, (00). This can be taken
as a formal definition of the Hamiltonian oracle prob-
lem. In this limit we can replace the discrete evolution
with the continuous evolution given by Eq. (@), so long
as we restrict p(t) to be continuous (or more generally
measurable if we use the integral form of the equation).

The more traditional definition of a Hamiltonian ora-
cle is that there is a set of Hamiltonians { H, } acting on a
space M. Bob can append a set of extra qubits with the
space B on which the Hamiltonians act trivially. He can
then control the system by either adding an extra Hamil-
tonian H’, by periodically applying unitary operators, or
by conjugating H, ® Iz by some time dependent unitary
of his choosing, so long as these operations don’t depend
on the hidden parameter x. These three variants are all
equivalent, and equivalent to the model where all three
activities can be done simultaneously. Though proving
the equivalence of these models is beyond the scope of
this paper, it is not hard to see that the above contin-
uous SDP serves as a lower bound for all the models,
again by the argument that no matter what Bob does,
the qubits in Alice’s possession are restricted to evolve
according to the above equations.

We note in closing that the above SDP can be sepa-
rated into two problems: The first is finding the set of
attainable final density operators p(T'). The second prob-
lem involves finding the optimal p and maximal Py,
given p(T'). Solving the second problem is often easy,
leading to a function Py, (p(T")). Therefore, most of the
effort below will involve searching for the evolution to-
wards a good final density operator p(T).

A. On canonical Hamiltonians

In this section we shall examine an oddity that arises
in the transition from discrete to continuous oracles.
Clearly given an oracle unitary, O, there are infinitely
many Hamiltonians H such that O = e, However, if
O is a standard oracle with only eigenvalues 1 and —1
then a canonical Hamiltonian can be defined by the pro-
cess of replacing the one eigenvalues by 0 and the minus
one eigenvalues by 7.

Unfortunately, while the above mapping does associate



a unique Hamiltonian to each unitary oracle, there are
cases when unitary oracles of equivalent computational
power are mapped into Hamiltonians of different compu-
tational power.

Consider for instance the oracle with a hidden bit b €
{0,1}, and the two unitary oracles

100 10 0
O=[010], oO1=(0-1 0], @2
001 00 -1

where the complete oracle in the notation of the previous
section would be O = [0)(0] 4, ® Op + [1)(1| , ® O1. A
different pair of oracles for the same problem are given
by

0 0
0

-1

0
O} = , 0} = 10 (13)
1

o O =
o= O
o O =

0
with O’ defined similarly. The two pairs of oracles are
clearly equivalent, as one can simulate one with the other
by simply applying a phase flip to the third basis state.

Now consider the Hamiltonians obtained from the
above unitaries by the standard eigenvalue replacement

000 000
Hy==n{[00 0], H=7nw|010 (14)
000 001
and
000 000
H,=n[000], H =n[010], (15)
001 000

where again H = |0)(0| ,®Ho+1)(1| ,®H; and similarly
for H'. With the first oracle pair it takes one unit of time
to perfectly distinguish between the two Hamiltonians,
whereas with the second pair only half a unit of time is
required.

In general, the existence of many choices for the Hamil-
tonian oracle is not a problem. So long as the normaliza-
tion is chosen so that e ¥ is computationally equivalent
to the discrete oracle that needs lower bounding, one may
choose any Hamiltonian that is easy to study.

B. Reduction by preponderance of symmetry

In the next two sections we shall show how oracle prob-
lems with large amounts of symmetry can be simplified
because they always have an optimal solution that shares
the symmetry of the problem, and therefore the search for
the optimal solution can be conducted over the smaller
space of density operators that are invariant under the
action of the symmetry group.

We say that a group G is compatible with an oracle
problem |vg), O (or H for the continuous case), and {11, }

if there exists unitary representations R4 on A, Raq on
M and R on M’ such that for all g € G we have

Ra(g)lvo) = |to), (16)
R(9)OR(g™") = O, (17)
R(9)HR(g™") = H, (18)

{R'(9)ILR (g} = {IL}, (19)

where for simplicity we have introduced R(g) = Ra(g9) ®
Ra(g) and R'(g) = Ra(g) ® Rar(g). In the last equa-
tion, the symmetry does not need to leave the operators
11, element-wise invariant, but must leave the set invari-
ant.

Given a solution p(t) to a G compatible oracle problem,
we can define for g € G

pq(t) = R(g)p(t)R(g™") (20)
for ¢ € [0,T] and similarly
Py =R(9)F'R'(g7"), (21)

which will be solutions to the oracle problem with the
same success probability (as can easily be verified). Nat-
urally, the reduced density operator on Alice’s side will
be pg(t) = Trl5, (1) = Ralg)p(t)Ralg™).

Because the equations are all linear, we can also take
linear combinations of solutions. Given a solution /()
define

%@ﬂai%@ (22)

geG

and similarly for pf,. These must also be a solution of the
oracle problem with the same success probability as p(t)
and p’. Note that this is a non-vanishing solution because
p(t) = 0 cannot be a solution of the equations. In fact,
the equations impose conservation of trace so that for all
t we have Tr[pc(t)] = (Yolvo).

We call a solution G-invariant if for all g € G and t €
[0, 7] it satisfies R(g)p(t)R(g~') = p(t), and furthermore
R'(g)p’R'(g~!) = p/ again for all g € G. A G invariant
solution will also imply that R4(g9)p(t)Ra(g™t) = p(t)
for all g € G and at all times.

It is not hard to see that given any solution 5(t), the
solution pi(t) constructed from it as above will be G-
invariant, and will have the same probability of success.
We have therefore proven the following lemma:

Lemma 1. Given an oracle problem that is compatible
with a group G, the set of success probabilities Py, that
can be achieved with query time T will not be altered if
we restrict the space of solutions to those that are G-
invariant.

The lemma allows us to concentrate only on G-
invariant solutions when studying both upper and lower
bounds.



C. Further reductions for standard oracles

Up to this point the set of allowed oracle unitaries or
Hamiltonians has been left unrestricted, but now we shall
focus on the standard oracles that change the phase of
the states in M based on the value of the hidden oracle
string.

Given a basis {|j) 4} for A and a basis {|k) ,,} for M,
which we refer to as the computational bases, we say that
O or H is in standard form if it can be written as

> Chuld) (Gl a @ 1) (k] pg (23)

Jik

where the coefficients C; ;, are real numbers in the case of
a Hamiltonian oracle and phases in the case of a unitary
oracle.

We further assume that the oracle problem is compat-
ible with a group G and that the action of this group on
the space M is by permutation of the basis:

Bam(9)Ik) p = 15(9)F) g (24)

for all k and g € G, where s(g) is a homomorphism from
G to the symmetric group Sy and M = |M|. For sim-
plicity we assume here that the index set k ranges from 1
to M so that Sy acts naturally on the index set by per-
mutation. In such a case the symmetry group G can be
extended to Gg = (Z2)M x G, where the semidirect prod-
uct is defined by (2/,¢')(z,9) = (2’ @ s(¢')z,¢'g) with
r € (Z2)M and M-digit binary string and s(g’) € Su
acting on it by permutation.

We can define representations of Gg on the spaces A
and M’ by Ra(z,g) = Ra(g) and Rum(z,9) = R (9)-
The nontrivial extension is the representation of Gg on
M defined by

R(z, g)lk) = (=1)"@*[s(g)k), (25)

where xj denotes the kth bit of x. It is simple to verify
that if the a standard oracle problem is compatible with
G, then it will also be compatible with Gq.

A Gg-invariant operator p on A ® M must have the
block diagonal form

S 0@ )k (26)
k

where the o} are positive operators on A. The block
diagonalization follows simply by considering the action
of group elements of the form (z,1), where x is a string
with a single 1 entry.

The o} are further restricted as follows:

e The operators o, must be invariant under the stabi-
lizer of k, that is, for all g € G such that s(g)k = k
we must have Ra(g)orRa(g™!) = oy

e If there exists a g such that s(g)k = k¥’ then oy =
Ra(g)orRa(g™!) for any such g.

The condition s(g)k = k' for some g € G defines an
equivalence relationship on the integers [M], and allows
us to divide them into equivalence classes. The most
general G-invariant p can therefore be specified by only
one matrix oy for each equivalence class, which must be
invariant under the stabilizer of k.

Of course, all of the above discussion would be moot if
we had just begun with the symmetry group G in the
first place. However, in this paper we shall choose G to
correspond with the symmetry of the classical problem,
and then G will be the extended symmetry that appears
in the quantum case.

We conclude this section by noting how the symme-
try simplifies density operators p on A (as opposed to p
on A® M as we have been discussing thus far). If the
decomposition of the representation R4 into irreducible
representations contains at most one copy of each irrep,
then by Schur’s lemma the most general G-invariant p
has the form

> aiPa, (27)

where a ranges over the irreps appearing in R 4, P, is the
projector onto the irrep, and the a? are non-negative con-
stants that sum to (1o|to) which we assume here is one.
It will be convenient to deal with the vectors (agp, a1, .. .)
which specify a point on the unit sphere for some dimen-
sion. This point on the sphere will be a complete de-
scription of the state of the protocol at a given instant of
time, or equivalently, of Bob’s knowledge at that instant
of time.

III. ONE-ITEM GROVER SEARCH

Here we study the Grover search problem under the
promise that exactly one item is marked. The goal, as
usual, is to identify the marked item. Though this prob-
lem has been extensively studied in the literature, it will
provide a good example for the ideas discussed in the
previous section, and as a comparison of the discrete and
continuous oracle models. Furthermore, we shall find a
modest improvement to the protocol found by Farhi and
Gutmann [1]].

Our strategy below, after defining the problem in the
new notation, will be to identify the symmetry group
of the problem and use it to reduce the search space of
potential solutions. Within this reduced space we will
then identify the initial state and the set of final states
from which the marked state can be identified with small
error. Finally, we study the dynamics needed to evolve
from the initial state to these good final states, which will
tell us the query time needed to solve the oracle problem.
Note that it is only in this last step that the discrete and
continuous oracle models need to be handled separately.



A. Problem definition

Fix an integer N > 1 and define
A = span{]j) for j € [N]}, (28)
M =M = span{lj) for j € {0} U[NT},  (29)

and on these spaces we define

N
o) = 4= 2= Dl (30)

H = wZ|j><j|A®|j><j|M, (31)
Oa = 1= (1=e7) 3 IN01a 2 17) (e (32)

I; = NjUla®li) bl forje [N (33)

Note that the normalization of H is chosen so that Oa =
e *AH - and the unit of time is chosen so that A = 1
corresponds to the standard discrete time oracle. In both
cases, the query space H has a state |0) which is left
invariant by H and O. This is the null query.

The normalization of |1g) to a unit vector, though nat-
ural from a quantum mechanical perspective, will im-
ply that Alice’s reduced density operator will not be the
Gram matrix but rather the Gram matrix scaled by 1/N.
This is also the source of the factor of NV in the opera-
tors IL;. After the symmetrization below we will be able
to replace the N projectors {II;} with the single projec-
tion operator II = Zj IT1; /N because the worse-case and
average-case success probabilities will be equal.

B. Symmetrization

The natural symmetry group for the problem is G =
Sn which acts by permutation on A and on the last N
states of M, but leaves |0) ,  invariant. With these defini-
tions the oracle is compatible with the symmetry group.

The most general density matrix p on A which is G-
invariant is given by

p=xl+){++y =) {+)- (34)

The two parameters are related because we require = +
(N = 1)y = Tr[p] = (ho|tbo) = 1. Therefore p (and hence
the state of the system at any given time) depends on
the single parameter x.

We now turn to the symmetrization of operators p on
A® M. As the oracle is of standard form, and the sym-
metry group acts by permutation on M, we can apply
the results of Section [ICl The most general j consistent
with the symmetries of the problem has the form

N
p =00 ®@[0)(0], + ZRA(Ql,j)UlRA(gl__Jl‘) @ |7 (e

Jj=1

(35)

where g1 ; is any element that maps 1 to j.
The matrix o9 must be invariant under the complete
Sn so that its most general form is

o0 = zo|+){(+| + yo(I — [+){+]), (36)

where positivity demands x¢ > 0 and yg > 0.

On the other hand, the matrix o; need be invariant
only under the subgroup Sy_ that leaves |1) , , invariant.
Under the full Sy we saw that A decomposes into two
irreps: the space spanned by [+), and its orthogonal
complement. Under the restriction to Sy_1, the first
representation will naturally still be irreducible, but the
second one will decompose into the space spanned by

N
|—1>—\/¥|1>—,/MN;_1);U> (37)

and its orthogonal complement, leading to a decomposi-
tion of A into three irreps. However, since the first two
are both the trivial representation, Schur’s lemma does
not prevent them from sharing off-diagonal terms and
therefore the most general Sy _1 invariant operator on A
has the form

=G =) (5 D) () +are o9

_1|

where Pit = (I —|+)(+|—|—1)(~—1]) is the projector onto
the orthogonal complement of the space that contains |+)
and |1). Positivity of o requires a > 0, ¢ > 0, d > 0 and
b|? < ac.

To conclude, we compute the partial trace of a given p
of the above form. It is given by the sum of the projec-
tions of o; onto the invariant subspaces of the full Sy:

Trmlp) = (zo 4+ alN)|[+)(+] (39)

N(N —2)
) (= YD)

N
+(yo +c _1+d

N

C. Boundary conditions

We now proceed to treat p, and consequently z, as a
function of time. The initial condition at time ¢ = 0 is
fairly simple p(0) = |¢0){t)o| and hence z(0) = 1.

We need to determine what values for z(T') are accept-
able as final conditions. The final probability of success
Pyin depends only on z(T). Because of the symmetry
of the problem, the optimal measurement is the pretty-
good measurement and the success probability is given
119, 20, 21] by

Pyin (SC(T))

+ (1) (40)
— % (valT) + VIN =D - x(T)))Z.

In particular, a zero error outcome requires z(T) =

1/N. On the other hand z(T) = 1/2 implies Py, =




1/2 + VN —1/N, so that a solution with some fixed
error Py, > 1/2 as N — oo requires at a minimum

#(T) < 1/2.

D. Dynamics

Bob’s task is now clear. He must use the dynamics of
the system so that x evolves from 1 at time ¢ = 0, and
decreases as quickly as possible, past 1/2 for constant
error and stopping at 1/N for zero error.

1. Continuous time

We begin with the continuous case, with dynamics
given by Eq. (@), which leads to a differential equation
for z(t):

dx(t)
dt

= —i(+| Tear[Hp(t) — p(t)H]|+)

. N
- —;—’TN > Glos (t)1+) = (o (1))
= 27V N — 1Im[b(t)]. (41)

The differential equation for y(¢) is uninteresting, as it
is related to the above by the normalization condition
z(t) + (N = 1y(t) = 1.

Bob controls the dynamics via his choice of p(t) at
each time, which he clearly would like to choose so that
the imaginary part of b(t) is as negative as possible. By
positivity of p we know that |b(¢)|? < a(t)c(t) whereas the
constraint Tra[p(t)] = p(t) translates via Eq. (89) into
2(t) = 2o(t) + ()N and y(t) = (1 — a(t))/(N —1) =
Yo+ c(t)N/(N —1)+d(t)N(N —2)/(N —1). Combining
these constraints we see that

1
—Imp(t)] < & vzt)(1 - 2(t)) (42)

with equality clearly achievable. The evolution of x(t)
following the optimal protocol is therefore given by

dx(t) VN -1
e —2m N x(t)(1 — x(t)) (43)
which is solved by
z(t) = cos? (w NN_ 1t> ) (44)

where we have already included the initial condition
2(0) = 1. Continuous Grover search can therefore be
solved exactly in a time

N 1 1
arccos —— =~ =V N, 45
N-—-1 VN 2 (45)

whereas solving with a fixed error greater than one half
requires a query time of at least N/(4v/N — 1).

1
T=-
™

2.  Discrete time

For the discrete case we have

2t +A) = (+ TemOp()0+) (46)
a(t) bt a*
= w400 0) (316 ) (5):
where
1— e*iﬂ'A
a = (+|01]+)=1—- N (47)
_ e—iTrA —
8 = (Hor = PTG

and Oy = I — (1 —¢"™)[1)(1| is the oracle operator when
query one is issued. Note that |a|? + |G]? = 1.

Before solving the general case of the above equation,
we must address what happens in the last query. Assume
that at some time ¢ we have z(t) > 1/N but for some
setting of the parameters we can achieve z(t+A) < 1/N.
Because z(t+ A) is continuous in the parameters of j(t),
and we could have also issued a null query (i.e., setting
aft) = b(t) = e(t) = d(t) = 0, wo(t) = (t), and yo(t) =
y(t) so that x(t + A) = z(t)) there must be a query such
that x(t + A) = 1/N, and therefore the problem can be
solved exactly in ¢ + A queries.

For all other times we know that for any choice of p(t)
we must have z(t + A) > 1/N. In this case Bob simply
wishes to make x(t + A) as small as possible. Given
that any solution with zo(t) > 0 we can always find a
better solution by choosing xo(t) = 0 and a(t) = z(¢)/N.
The only two constraints in which a(t) or z(t) appear
are z(t) = xo(t) + Na(t) which is satisfied by the new
variables, and a(t)c(t) > |b(t)|? which is also satisfied as
we have not decreased a(t).

Similarly, given any assignment of the above variables,
we can always set

a*
|ap]

which will not increase z(t + A). With these simplifica-
tions, the optimal solutions must be of the form:

2
w(t+2)=N (mu/# - wW@) (50)

for some ¢(t) € [0, (1 — x(¢))/N]. However, since by as-
sumption z(t + A) cannot be zero, it must be minimized
by ¢(t) = (1 — x(¢))/N. We are left with the recursive
relation

vt +8) = (llVa@ - VT —20) (1)

which is solved, with starting point x(0)=1, by

) (52)

b(t) = —

a(t)c(t) (49)

D[ =~

x(t) = cos® (arcsin(|ﬁ|)



yielding an exact solution in a query time

1

aArccos ——
T=A 2~-<A¢/§>m . (53)
arcsin ==L S —

As before a fixed error greater than one half can also be
attained in approximately half the time.

E. Discussion

Just as in the discrete case, the optimal continuous
protocol for one-item Grover search can be described as
a rotation in the two-dimensional subspace that contains
the vectors |+) and the marked state |j). This rotation
is effectuated by the Hamiltonian

N -2

Htotal:Hj+H/:7T|j><j|+7T N

)+ (54)

where H; is the oracle Hamiltonian if the hidden string
is j, and H’ is the j independent Hamiltonian that de-
fines the algorithm. In the orthonormal basis |[+) and
|—;) for the relevant two dimensional subspace the above

equation reads
N -1 N-20
N—1>+< 0 oﬂ
(N -1)

7N —1
— I+ Og,
N N

Hyptal = — !
total — N m

3

(55)

where |—;) is the natural generalization of Eq. (7)), and

o, is the Pauli x operator. The evolution is given by

<7rt\/N - 1>
N

16;(t)) = em<Nl>/N< 4 (56)

—isin (me> |—j>)

and at time T = N/(my/N — 1) arccos 1/v/N we end up
(ignoring the global phase) in one of the states

1 . /N—-1 .
6,(0) o =4 =iy === = UL, ()

where U = —iI + (1414)|4+){(+]|. At this time all N states
become mutually orthogonal, and therefore the N differ-
ent Hamiltonian oracles can be perfectly distinguished.

In the protocol of Farhi and Gutmann [1], they used
oracles of the form H; = E|j)(j|, and therefore to com-
pare the results we need to set £ = w. With our notation
their total Hamiltonian is given by

Hiotar = Hj + H' = 7[5} (j| + 7|+)(+] (58)

and after a time of exactly T = VN /2 this Hamilto-
nian will evolve the state |+) into the state |7). This
is marginally slower than the optimal time found above
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which can be expanded as v N /2 —1/74+O(1/v/N). For
N = 2 the difference is exactly given by a factor of /2
as pointed out in Ref. []].

The practical difference between the two protocols is,
of course, insignificant. Nevertheless, it is interesting to
see how it arises, as generalizations of this trick will be
useful later. In the relevant two dimensional subspace for
a given j, we can study the state on the Block sphere,
where we take the north pole to be the initial state |+).
The traditional goal is to evolve to the state |j) located
near the south pole, and the Hamiltonian of Eq. (ES)
follows the obvious path that connects them. However,
the ability to add in a Hamiltonian of arbitrary strength
proportional to |[+)(+| is equivalent to being able to do
arbitrarily fast rotations around the vertical axis. There-
fore, the set of points on a circle of constant latitude
should all be regarded as a single point, and the optimal
protocol involves choosing at each time the correct lon-
gitude so that the evolution southwards is greatest. In
particular, the protocol need not arrive at |7) but may
end at any of the other points of similar latitude, which
the optimal protocol does.

The Farhi and Gutmann protocol [1] does achieve a
more general goal: mainly given an oracle Hamiltonian
H = 7w|m){m|, where the marked state |m) is arbitrary,
evolve into the marked state (in a time that depends only
on the overlap of the marked with the initial state). Our
protocol essentially preassumes that the marked state is
always a computational basis state. However, if our goal
is to identify the Hamiltonian, then producing a copy
of the marked state is only useful if the set of possible
marked states is orthogonal, in which case we may as-
sume that they belong to the computational basis.

IV. ORACLE INTERROGATION

We now turn our attention to the Hamiltonian oracle
version of Oracle Interrogation [7], where the oracle has
a n-bit string which can be queried one bit at a time,
and the goal is to output the complete n-bit string. The
problem is important as it serves as an upper bound on
all problems where the goal is to output some function
of the n-bit string.

We shall also briefly examine the XOR problem, where
the goal is simply to output the XOR of the above n bits.
In both the discrete and continuous oracle setting, this
problem is nearly as hard as outputting the entire n-bit
string.

A. Problem definition

Fix an integer n > 1, let N = 2™, and define

A span{|z) for z € {0,1}"}, (59)
M = span{|j, k) for j € {0} U [n],k € {0,1}}. (60)



We also introduce the final output spaces as M’ = A for
oracle interrogation and M}, = span{|0),|1)} for the
XOR problem. On these spaces define

1
lvo) = \/—N;m’ (61)

O = > (1" ezl 4 @ |, k), Kl pgs (62)

x,j,k
H = g(), (63)
I, = Nlz)(z|4® [z) (2|0, (64)

Oz xor = Nlz)(z|, ® |XOR($)><XOR(95)|M;(OR7 (65)

where x ranges over the n-bit strings, j = 0,...,n and
k € {0,1}. We use the notation x; to denote the jth bit
of z, and define zy = 0. We also use XOR(z) to denote the
XOR of the n bits of . The answer verification operators
for oracle interrogation are {II, for x € {0,1}"} whereas
for the XOR problem they are {II; xor for z € {0,1}"},
otherwise the problems are identical.

Though the oracle O may look somewhat peculiar, it
can be thought of as the regular oracle that applies a
phase (—1)% to query state |j), followed by the o, Pauli
operator on the last qubit. Since this operation is entirely
on the message side, and could equally well be applied
by Bob before or after the query, and therefore offers
no extra computational power. As usual, Bob can also
request a null query on the state |0).

In the continuous case, the extra bit k can be thought
of as an arrow of time. For k = 0 the oracle applies
one Hamiltonian and for k = 1 the oracle applies minus
the same Hamiltonian. It is not clear whether one of
these blocks is computationally equivalent to the com-
plete Hamiltonian. This is an interesting open question.
Unfortunately, the symmetrization approach to studying
the oracle requires both blocks.

The normalization of H is chosen so that e 7“7 = —iO,
and hence the query time for the Hamiltonian oracle
problem is a lower bound on the number of queries for the
discrete oracle problem. The normalization does have the
unfortunate property that at time ¢ = 1/2 one can solve
the n = 1 case exactly. However, the unitary e */2 is
equivalent to performing the identity for a hidden zero
bit, and applying phases of +i for the hidden one bit,
and these operations cannot simulate the standard one
bit query.

B. Symmetrization

The natural symmetry group of these oracle problems
is G = (Z2)™ x Sy, with a multiplication rule given by
(2,8 )(x,8) = (' ® s'(x),s's) where s € S,, and z is
an n-bit binary string. The action of s on z is given by
permutation of the bits.
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The group G has a set of representations defined by

RA(‘Tv S)|y>_A = |‘T @ S(y)>_,47
Rm(z,8)|5, k) = 15(3)s 250y © F) o
Ry (@, 8)[Y) pr = 2 ® $(Y)) pars
Ry, (, 3)|k>M’\UR = |XOR(z )@k>M’\OR'
With these definitions, both oracle problems are compat-
ible with G.
We begin the symmetrization by describing the most

general positive operator p on A that is G-invariant. We
shall be working in the Hadamard basis for A defined by

|j>,4 = H®n|x>A7 (70)

where H is the qubit Hadamard operator. In this basis,
the representation R 4 acts by

Ralz,9)l§) = (1) W[5(), (71)
where |z| denotes the Hamming weight. Invariance under
G implies that (Z|p|g) = (Z|Ra(9~')pRa(9)]§). Using
elements of the form g = (2,1) we see that (Z|p|g) = 0
for x # y. Furthermore, using g = (1,s) we see that
(Z|p|Z) depends only on the Hamming weight of x. We
can therefore write the most general G-invariant p as

n

p=Sa | < S Iaal | (72)
8]

J=0 |z|=7

The normalization is chosen so that Tr[p] = 1 implies
Z a = 1 and therefore the vector (ag, .. ., a,) is a point

on the unit sphere S™ embedded in R™*!. Positivity of p
requires a? > 0, which in turn requires a; to be real. A
unique set of p matrices can be generated by restricting
to a; > 0 for all j.

We now turn to the symmetrization of 5. As G acts
by permutation on M, we can use the results of Sec-
tion [I'C] which provide us with a decomposition of the
most general p as

n 1
~:ZZ ]k®|]7 juk|/\/[7 (73)
j=0 k=0

where 09 o and 0p,; must be G-invariant and the restric-
tion on the remaining o matrices is discussed below. We
expand

|z|=j

-~y Swal. o
= (J)

As the evolution will only depend on the sum o ¢ + 091
(i.e., they both correspond to null queries), it will be



convenient to define ¢; = (;0 + {;,1, which are required
to be non-negative.

The remaining matrices are all related to each other
by ok = Ra(g9)o1,0Ra(g7 ") for any g € G such that

Mm(9)[1,0) o, = |4, k) s In particular, o1 must be
1nvar1ant under the subgroup H of G that leaves 11,0)
invariant. We can write H = (Z2)" "1 x S,,_1.

From Eq. ([2) we see that A decomposes into n + 1
irreps of G given by span{|z) for |z| = j} forj =0,...,n
The j = 0 and j = n irreps are both one dimensional and
therefore will also be irreps of H. Under the restriction to
the subgroup H, the other irreps each split into two. An
irrep of vectors with Hamming weight j will split into the
vectors that have a zero in the first slot (which will be an
irrep of H consisting of Hamming weight j vectors), and
the vectors that have a one in the first slot (which will be
an irrep of H consisting of Hamming weight j—1 vectors).
In total, we end up with two copies of each of the n irreps.
Each pair of irreps can share off diagonal elements but
otherwise the matrix must be block diagonal. Therefore
the most general H-invariant operator on A has the form

) o

1 .
> |Z><2|]a
n—1
Qn( j )ze{o,l}"l

|zl=4

where we have decomposed A into the first qubit and
the remaining n — 1 qubits. The notation means that,
for instance, |0) ® |Z) = |&) where z is the n-bit string
obtained by concatenating 0 and z. Positivity of oy ¢ is
equivalent to o; > 0, v; > 0 and «;7y; > |B;]? for every
j.

Note that the above form for an H-invariant oy o could
also be obtained directly by noting that H-invariance im-
plies that (z|o10ly) can depend only on the Hamming
weight of the last n — 1 bits of x @ y.

The normalizations above have been chosen in order to
simplify the equation p = Tr¢[p] which is now equivalent
to

Co + ao Jj=0,
a? =<¢GGtraj+v-1 0<j<n, (76)
Cn + Yn—1 Jj=n.

C. Boundary conditions

The initial condition is simply given by ap = 1 and
aj = 0 for j > 0. For the final probabilities of suc-
cess, we note that after symmetrization, the probability
of correctly outputting x or XOR(z) is independent of the
hidden string z, therefore we can replace the final mea-
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surements by
M=) |2}l 4 ® ) (2] 0 (77)

Meon = Y [2)(x] 4 @ [XOR(2)) (XOR(2)] 1, (78)

x

for the oracle interrogation and XOR problems respec-
tively. The final step is then a standard state discrimi-
nation problem dependent only on p(T).

For oracle interrogation, p(7') is proportional to the
Gram matrix of the states to be distinguished. Since it is
diagonal in the Hadamard basis, \/p(T) is also diagonal
in the Hadamard basis and hence its diagonal elements
in the computational basis are all equal. Just as in the
Grover search case above, this implies |19, 120, 21] that the
optimal measurement is the pretty good measurement
and the success probability is given by

am@@»=-l( ) (1)
-5 (ZY0) @) )’
where @(T') = (ao(T), ..., an(T)) which involves the com-

ponents of p(T). The target Vector dy with components

ans =5 () (50)

has unit length, and so a zero error solution requires
a(T) = dy.

The last step in the XOR problem involves the state dis-
crimination of two mixed states. As Bob has the purifica-
tion of p(T'), we can write the joint state as \/p(T) @ I|P)
where |®) = > |x) 4 ®|x) \.,. The two states to discrim-
inate are therefore given by

m = Tra [&@I(W@I) ) (D] (W@I)}
= (VAR/m) 1)

where k € {0,1}, Py is the projector onto states |z) with
XOR(z) = k, and the transpose is taken in the compu-
tational basis. The normalization is set to Tr[ng] = 1/2
which is the a priori probability. Now we can use the
result of Helstrom for two-state discrimination [22], so
that

Pun(p(T)) = 5 Tr(m-+m + o — m) (82)
= %+%Tr}\/p(T)(Po—P1)\/P(T)}
1 1
= §+§Zaj(T)an*J(T)’

where in the last step we use the fact that Py — P, =
o®" in the Hadamard basis, and so the matrix inside the



absolute value is block diagonal with blocks pairing |Z)
and |z oL 1).

From the above discussion we can see that the zero
error XOR final states satisfy a; = a,—; for all j. Fur-
thermore if a; = 0 for j > n/2 then P, < 1/2 for both
the XOR and oracle interrogation problems. In fact, we
have for both problems

D. Discrete oracle dynamics

We shall only sketch the discrete oracle case here for
comparison. From Eq. (8) we get the dynamics

p(t + 1) = ono(t) + 0’071(15) + 2n [01_’00'1_’0(001_73} sym 5

(84)
where [ ]sym refers to the projection to the G-invariant
subspace. The operator O g is the unitary realized when
state |1,0) ,, is queried, and has the effect exchanging
a; < v and § < 0%, leading to the equations

Co(t) +0(t) Jj=0,
aj(t+1) = Gt) +7(t) +a;1(t) 0<j<n, (85)
Cn(t) + ap—1(t) j=n.

In combination with the constraint Eq. (76]), one can see
that at every step we can split a?(t) into three pieces:
one which will get added into a? 41(t+1), one which will
be added into af_,(t + 1) and one which will remain in
a?(t+1). Inductively, we can prove that the set of achiev-
able vectors after ¢ queries satisfy a; = 0 for j > ¢ but
otherwise need only satisfy the normalization constraint
2 a? =1.

In particular, this proves that for the XOR problem
Pyin =1/2for T < n/2 whereas Py, = 1for T = [n/2],
which is achieved as follows: for n even a? =1 and the

rest zero, for n odd af, . ), = 1/2 and the rest zero.

For oracle interrogation we see that an exact solution
requires T' = n. However, since most of the amplitude of
the final vector dy is contained in the indices a,, /94 0(m)
the problem can be solved to high accuracy by only cor-
rectly adjusting these components. This requires a query
time T' = n/2+0(y/n) reproducing the result of van Dam

@

E. Continuous oracle dynamics

From Eq. (@) we get the dynamics

dp(t) = —2ni [Hi001,0(t) — 01,0(t)H1,0]

o (86)

sym’
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where as before [ ]sym is the projection onto the symmet-
ric subspace and Hyo = § ) (—1)"|z)(x|. In each of
the 2 x 2 blocks comprising o1 9, Hi,o is proportional to
the Pauli o, operator (as the blocks are in the Hadamard
basis) and hence each block leads to a calculation of the
form

01 Q; ﬁj - Q; ﬁj 01

Go) () -G 2)(e) o
_ (—2iIm[B;] v —qy
S\ o= 2iIm[By]

which leads to the differential equations

da? (t) Im ﬁo(t) Jj=0,
cht =—7m¢Imp;(t) —ImpB;_1(t) 0<j<n, (83)
—ImfB,_1 j=n.

Now we apply the constraints from the positivity of o1 9
which imply |Im 8;(¢)| < v/ (t)7;(t). From Eq. (76) we
also have a? < o + yj-1 (with a,, = v_1 = 0). We can
therefore write at every time

Im B;(t) = bj(t)cj+1(H)aj(t)aj+1(t), (89)

where the new parameters represent Bob’s degrees of
freedom but must be consistent with the constraint
b3(t) + ¢5(t) < 1 for j = 0,...,n. Canceling a factor
of a;(t) we obtain

d ~
at) = M(tya(e), (90)

where M(t) is the (n + 1) x (n 4+ 1) real antisymmetric
(as required by probability conservation) matrix which
is zero everywhere except the entries one-off from the
diagonal

T

M(t)jg+1 = =M ()j+15 = =50 (e (t) - (91)
for j = 0,...,n— 1. An extra factor of 1/2 appears in
the above equation from the relation ddi: = Qa%.

Note that in the transition to Eq. (O0) we canceled
factors of a;(t) which potentially could be zero. All this
implies is that the derivative of a;(t) need not satisfy the
above equation when a; = 0. However, this is a set of
measure zero, and a continuous evolution of @ will require
that the above equation be satisfied at all times.

Let us rehash the current state of the problem. The
vector d(t) indicates the state of the system (and hence
Bob’s knowledge of the hidden string) at a given time.
Bob can affect this parameter by controlling the ma-
trix M (t) which he can modify at any time. The ma-
trix M (t) must have the form given by Eq. (@) with
b3(t) + ¢5(t) < 1 but otherwise can be chosen arbitrarily.
Bob must choose the parameters {b;(t),c;(t)} to evolve
from the initial condition of @(0) = (1,0,...,0) in or-
der to maximize @(T) - @y at some final time T and with



high probability solve the oracle interrogation problem.
A similar end criterion was formulated above for the XOR
problem.

Unfortunately, finding such an optimal evolution is still
a difficult problem. We shall find below the optimal
strategies for zero-error oracle interrogation for n = 1
and n = 2. The latter case is obtained by studying the
geodesics of S? with a Riemannian metric. For n > 2 the
metrics appear to be of Finsler type, and therefore be-
yond the scope of this paper. Nevertheless, we shall also
prove a simple lower bound that will apply both to the
oracle interrogation and XOR problems and will apply to
bounded error solutions as well.

F. The n=1 case

For n = 1 the differential equation reads

£ (5) 3w (% ) (2) o

with constraints bg < 1 and c% < 1 (note that ¢y and
b1 do not appear anywhere in the equation). The initial
condition is @(0) = (1,0) and the final vector for zero
error oracle interrogation is @(T) = d@; = (1,1)/V/2.

The optimal algorithm is to choose bg(t) = ¢1(t) = 1
at all times, in which case we obtain the evolution

ap(t)\ _ [cosmt/2
(al(t)) o <sin7rt/2 ’ (93)
The minimum time required to arrive at the zero error

final point is "= 1/2.

G. The n =2 case

For n = 2 the differential equation reads

d ag (t) T 0 —wW1 (t) 0 ao (t)
a aq (t) = 5 w1 (t) 0 —w?2 (t) aq (t)
as (t) 0 w2 (t) 0 a9 (t)

(94)

with wy = —bgc; and we = —byco, which are constrained

by w? + w3 < 1.

If we position the unit sphere so that the vector (0,1, 0)
corresponds with the north pole, then effectively, Bob
can perform any rotation around an axis that lies on the
equator and at a speed less than or equal to 7/2 radians
per unit time. Rotations around other axes can only be
generated as composite rotations.

Thus far we have restricted ourselves to vectors @ from
the intersection of the non-negative cone with the unit
sphere. However we can now lift the restriction and al-
low vectors from the entire unit sphere. The only conse-
quence of this is that we must identify points that differ
by changes of sign, as the real state p(t) depends only

on a?(t). We now have to consider two possible starting
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points and eight possible zero-error ending points. The
symmetry (reflections north-south and east-west) reduces
the set of inequivalent pairs to only two: starting from
(1,0, 0) and ending at either (1,v/2,1)/20r (—=1,/2,1)/2.
Note that the paths that connect to the latter point
would still be allowed under the restriction to the non-
negative cone, but would have required a “bounce” on a
boundary.

We shall now reformulate the problem in the language
of differential geometry, where the sphere will acquire a
non-round metric constructed so that the shortest dis-
tance between two points is equal to the minimum query
time that is needed to evolve from one point to the
other. The notation used below will follow the conven-
tions adopted in general relativity.

It will be convenient to work in polar coordinates

ap = sinfcos ¢, (95)
ap = cos0, (96)
as = sinfsin ¢, (97)

where the initial condition is now 6 = /2, ¢ = 0 and the
final points are § = 7/4, ¢ = w/2 + w/4. Associated to
this basis we have the coordinate (unnormalized) basis
for the tangent space

eg = (cosfcos,—sinb, cosbsin ), (98)
ey = (—sinfsing,0,sin b cos @), (99)
At any given time, the set of possible velocity vectors

depends on the current position and the Bob controlled
parameters wi, we and is given by

0 — w1 0 ap
T ™ We
5 wq 0 — W2 a1 | = 5 (w969 =+ meqb) ,
0 wy, O as an
(100)
where we introduced
wy = wssin @ — wy cos ¢, (101)
Wy = wWa COS P+ wi sin . (102)

The constraint w? +w3 < 1 is equivalent to w} +wq25 <L
It is always optimal for Bob to choose the magnitude
of the velocity to be as large as possible consistent with
the chosen direction, and hence the inequality constraint
will always be saturated. This produces a set of velocity
vectors that correspond to unit velocity. The same set
can be generated by the metric
ds? = % (d92 + tan? 9d¢2) (103)
and therefore the distance assigned to a curve by this
metric will be equal to the time it would take Bob to
evolve the system through that curve. One is now left
with the problem of finding curves of minimal distance
on the surface with the above metric.
Strictly speaking the metric is ill defined on the equa-
tor, where our initial point lies. One can instead study



curves that begin at § = 7/2 — ¢ and ¢ = 0 and then
bound the distance of these points to the equator. The
resulting total distance in the limit ¢ — 0, however, will
be the same as will be derived below by ignoring the
divergence at the equator.

We can also describe the metric by its non-zero com-
ponents ggp = % and gpg = %tarﬂ 0. The Christoffel
symbols are defined by

1
Ff\w = _g>\6 (Q;M,V + Gsv,u — guy,é) (104)

2

and therefore the non-zero symbols for our metric are
given by

10 sin 6
r, = ———tan®’=-——2= 105
¢ 200 " cos3 6’ (105)
1 0 1
Y =1% = —— — tan®’0=————. (106
9¢ ¢9 2tan? 6 00 a sin @ cos 0 (106)
The geodesic equation is

dov* N L,

E = —F#U’UM’U 5 (107)

where v is the velocity vector. Using dots for time deriva-
tives the geodesic differential equations for our metric can
be written as

sinf .

0 = 2 108
i (108)
. ) .
= —0¢. 109
¢ sin 6 cos 0 ¢ (109)
The second equation is solved by
. T tan 6y
=+t——— 110
¢ 2 tan? 6’ (110)

where 0y is an arbitrary parameter whose form will be-
come clear in a moment. The same equation can also
be obtained directly by the variation of the action with
respect to ¢. The geodesic equation also implies the con-
servation of the total speed, which we normalize to one

1 = goeb? + gpsd*. (111)

We can now combine the two previous equations to ob-
tain a differential equation for 6

. T tan? 6y
§=+24/1 - 270
2 tan? 6

where the meaning of 6y becomes clear: it defines the
maximum height of the geodesic curve. The differential
equation is solved by

(112)

T, L cos(fp) sin Hdb
2 \/COS2 6 sin? 0 — sin? Oy cos? 0
cos Opd(cos )

+ Vcos? By — cos? 0

) cos 6
= cosfyarcsin ,
cos by

(113)
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where in the last step we have chosen our constant and
sign so that ¢ = 0 corresponds to the initial condition of
0 = /2, and as time increases we move north.

Now we turn to the differential equation for ¢ which
can be obtained by substituting the above solution into

Eq. (I10)

; mtan g 1
o == 2 (1—cos29_1)

0 1
_ g rtanbo e — 1.
2 1 — cos? §; sin Tonsds

(114)

Using the derivative

d in 6 -
— arctan (sin fp tans) = 31112 0 [1+ sin? f tan? 5| '
ds cos? s
in
SR — (115)
1 — cos2 6y sin” s
we obtain
t tan 6
b = _% + arctan (sin 6o tan 5 oos 90> (116)
0 sin 90 cos f
= —sin#p arcsin (g) + arctan cos 8o
cos by 1— cos? 6
cos? fg

with a choice of the additive constant and sign so that
¢ =0att=0,and ¢ increases with time. Unfortunately,
solving for the constant 8y seems to require solving a tran-
scendental equation, and therefore the calculation needs
to be completed numerically.

Of course there are many geodesics that connect the
points that we are interested in. Before proceeding with
a numerical solution, we must ensure that we are exam-
ining the shortest geodesic.

The geodesics all start at the equator, rise up to some
height cosfp, and then fall back again to the equator so
that the curve is symmetric around the apex. During the
transition from 6 = 7/2 to 6 = 6y we effect the following
increases:

At = cosfy,
Agp = g(l—sin%).

(117)
(118)

Also note that if we remove the sin 8y factor from inside
the arctan we increase the right-hand side of Eq. ([16l]).
Without that factor however, the arctan is equivalent to
and arcsin and so we have

¢ < (1 —sinfy) arcsin ( cos ) . (119)

cos by

We learn two things from the above observations. First,
we learn that on the way up, ¢ < (1 — 1/v2)7/2 < 7 /4
at @ = w/4 so that we must pass the apex at least once
before arriving at the zero-error solution. Second, we
need a solution with 6y < 7/4 and hence the time to



climb to the apex and return to the equator is at least
2/v/2 > 1 which is more time than it takes to query the
two bits separately. Therefore the optimal solution must
rise to the apex once, and arrive at either ¢ = 7/4 or
¢ = 3w /4 on the way down. The time of arrival for such
a trip is

1 0
T = 2cosfo (1 — ~ arcsin < o3 )) . (120)
™

cos bty

which increases as cosfy gets larger. Since a geodesic to
¢ = 37/4 will require a larger cosfy than one to ¢ = 7/4
we have proven that the shortest path to a zero error
point arrives at ¢ = w/4 after crossing through the apex
exactly once. The total increase in ¢ over such a path
is given by twice the right hand side of Eq. (II8]) minus
the right hand side of Eq. (II6). Substituting into this
equation 6 = 7/4 and ¢ = w/4 we can numerically solve
for cosfy ~ 0.7477. Using this value in the above equa-
tion we find that the query time needed to exactly solve
the n = 2 case of oracle interrogation is

T ~ 0.9052. (121)
That is, only about 90% of the time it would require to
query both bits separately.

H. Lower bound

To conclude we shall prove a weak but fairly simple
lower bound on the query time needed to solve the Hamil-
tonian oracles for XOR and oracle interrogation even in
the bounded error setting.

From the discrete case we learn that in general am-
plitude moves from the variables a; with low values of
J to the ones with high values of j. We also know that
after only t queries, the variables a; with j > ¢ are zero.
Though this no longer holds in the continuous case, it
does motivate the study of the variables

Aj = (122)
From the dynamical of Eq. [@0) we have for j > 0
dA3(t) = da; (t)
27— 9 t)—2 123
dt kgja’“( )= (123)

= whj_1(t)c;(t)a;(t)a;—1(t).
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Using A; > aj, bj—1 <1 and ¢; <1 we obtain

dAj (t) ™
< —A; .
s =g

(124)

An inductive solution can be constructed because we
know that for all time Ay (t) = 1 by conservation of prob-
ability, and the remaining initial conditions are A;(0) = 0
for j > 0. Therefore

(125)

In particular, we know from Eq. ([83) that we can re-
late the probability of success to the above variables by
Puin(T) < % + Ay (T). Therefore, the query time
needed to solve the Hamiltonian versions of XOR and or-
acle interrogation with bounded error is at least

1

e 23" -}

win 2
n
— +Q(1) ~0.117n.

e

/3]

Y]

(126)

The bound is likely weak in the continuous case, and
certainly weak as a lower bound of the discrete case.
Nevertheless, it captures the essential O(n) scaling. The
main open question is: can similar continuous methods
be used to prove lower bounds for new problems?
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